Journal Pre-proof

Epiretinal Membrane Surgery After Retinal Detachment Repair: Visual Acuity Outcomes and Optical Coherence Tomography Analysis

Rebecca Russ Soares, MD, MPH, Raziyeh Mahmoudzadeh, MD, Mirataollah Salabati, MD, Erik Massenzio, BA, Rachel Israilevich, BS, Samir N. Patel, MD, John Hinkle, MD, Ajay E. Kuriyan, MD, MS, Jason Hsu, MD, Sunir J. Garg, MD, M. Ali Khan, MD

PII: S2468-6530(21)00103-2

DOI: https://doi.org/10.1016/j.oret.2021.03.013

Reference: ORET 1023

- To appear in: Ophthalmology Retina
- Received Date: 7 January 2021
- Revised Date: 16 March 2021
- Accepted Date: 17 March 2021

Please cite this article as: Soares R.R., Mahmoudzadeh R., Salabati M., Massenzio E., Israilevich R., Patel S.N., Hinkle J., Kuriyan A.E., Hsu J., Garg S.J. & Khan M.A., Epiretinal Membrane Surgery After Retinal Detachment Repair: Visual Acuity Outcomes and Optical Coherence Tomography Analysis, *Ophthalmology Retina* (2021), doi: https://doi.org/10.1016/j.oret.2021.03.013.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© YEAR Published by Elsevier Inc. on behalf of American Academy of Ophthalmology

1 2	Epiretinal Membrane Surgery After Retinal Detachment Repair: Visual Acuity Outcomes and Optical Coherence Tomography Analysis
3 4 5 6 7	Rebecca Russ Soares, MD, MPH ¹ , Raziyeh Mahmoudzadeh, MD ¹ , Mirataollah Salabati, MD, Erik Massenzio, BA, Rachel Israilevich, BS, Samir N. Patel, MD, John Hinkle, MD, Ajay E. Kuriyan, MD, MS, Jason Hsu, MD, Sunir J. Garg, MD, M. Ali Khan, MD ¹
8 9	¹ Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA
10 11 12	Corresponding author & reprint requests to:
13 14 15	M. Ali Khan, MD Mid Atlantic Retina, Wills Eye Hospital 840 Walnut St. Ste 1020
16 17 18	Philadelphia, PA 19107 Phone: 215-928-3092 Fax: 215-928-3484
19 20 21	makhan@midatlanticretina.com
21 22 23	should appear online-only: Table 5 and 6.
24 25	Financial support: None
26 27 28	Acknowledgements: The authors would like to thank Gui-shuang Ying PhD Associate
29 30 31	Professor of Ophthalmology and Senior Biostatistician at the University of Pennsylvania, for his expertise and statistical review of the data presented in this manuscript.
32 33	Acronyms: CFT- central foveal thickness
34 35 36	ERM- epiretinal membrane ILM- inner limiting membrane
37 38 39	LogMAR- logarithm of the minimal angle resolution MP- membrane peeling OCT- optical coherence tomography
40 41 42	ONL -outer nuclear layer PFCL- perfluorocarbon
42 43 44	RD- retinal detachment RPE-retinal pigment epithelium
45 46	SB- scleral buckle VA- visual acuity

47 Abstract

- 48 **Purpose:** To assess visual acuity (VA) outcomes of epiretinal membrane (ERM) surgery
- 49 following primary rhegmatogenous retinal detachment (RD) repair.
- 50 **Design:** Retrospective, consecutive case series.
- 51 Subjects: Eyes undergoing pars plana vitrectomy (PPV) with membrane peel (MP) surgery for
- 52 ERM following primary RD repair (PPV with or without scleral buckle (SB) and gas

53 tamponade).

- 54 Methods: Retrospective chart review from 2015 to 2018. A previously described ERM grading
- 55 scale was utilized for OCT structural analysis.
- 56 Main outcome measures: Visual acuity (VA) and change in VA at 6 months and final follow-
- 57 up. Secondary outcomes included assessment of structural OCT features predictive of VA
- 58 outcomes.
- 59 **Results:** 53 eyes of 53 patients were included. VA improved significantly from logMAR $1.00 \pm$
- 60 0.51 (Snellen 20/200) pre-MP to 0.45 ± 0.41 (20/56) at 6 months and 0.42 ± 0.41 (20/53) at final
- 61 follow-up, a significant improvement (p<0.001) at each timepoint. Eyes with macula on RD had

62 better 6 month $[0.29 \pm 0.18 (20/39) \text{ vs. } 0.51 \quad 0.46 (20/65), \text{ p}=0.02]$ and final VA $[0.29 \pm 0.14 \text{ cm}]$

- 63 (20/39) vs. 0.46 0.47 (20/58), p=0.04] after MP surgery, but VA improved significantly from
- 64 pre-MP in both macula on and macula off eyes (p<0.0001, respectively). Three (5.7%) eyes were
- 65 graded as Stage 1, 8 (15.1%) as Stage 2, 8 (15.1%) as Stage 3, and 34 (64.2%) as Stage 4, with a
- trend toward higher ERM stages having worse pre-MP VA (p=0.06). Both MP occurring 180
- 67 days from RD repair and ellipsoid zone loss were associated with worse pre-MP VA [1.13 ± 0.09]
- 68 (20/270) vs. $0.82 \pm 0.07(20/132)$, p=0.01 and $1.21 \pm 0.07(20/324)$ vs. $0.74 \pm 0.09(20/110)$
- 69 p=0.0003, respectively]. Ellipsoid zone loss [adjusted means 0.54 ± 0.07 (20/69) vs. 0.25 ± 0.08

70	(20/36) at final visit, p=0.006] and RD repair with PPV/SB $[0.53 \pm 0.08 (20/68) \text{ vs. } 0.31 \pm 0.07 \text{ m}^{-1}]$
71	(20/41) at final visit, p=0.03] were significantly associated with worse VA at both 6 months and
72	final follow-up.
73	Conclusions: Eyes undergoing MP after RD repair have significant VA gains independent of
74	macula-status at time of RD repair. Pre-operative ellipsoid zone disruption was the OCT feature
75	best predictive of VA.
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	

93 Introduction:

94	Epiretinal membrane (ERM) formation commonly occurs after primary rhegmatogenous
95	retinal detachment (RD) repair, with a variable incidence of 6.1% to 12.8%. ^{1,2} The
96	pathophysiology is thought to be due to the release of retinal pigment epithelium (RPE) cells
97	from a retinal break with subsequent proliferation on the macular surface. While some patients
98	may be asymptomatic, others may have significant reduction in visual acuity (VA) or
99	development of metamorphopsia that prompts surgical intervention. ^{3,4} Small gauge pars plana
100	vitrectomy (PPV) with membrane peeling (MP) with or without inner limiting membrane (ILM)
101	peeling is the standard of care for visually significant ERM.
102	As visual improvement after ERM surgery may be variable, identifying pre-operative,
103	imaging-based predictors of visual improvement is helpful to guide expectations. ^{5,6} This may be
104	more difficult in eyes with history of RD repair, as prior macular involvement may limit visual
105	potential. Previous predictors of visual acuity (VA) have focused on outer retinal changes, such
106	as ellipsoid zone loss. ⁷ For example, Theodossiadis et al revealed that final VA was significantly
107	better in both macula-on and macula-off eyes with intact ellipsoid zone and external limiting
108	membrane layers, as compared to macula-off eyes with disrupted outer layers. ⁸ More recently,
109	Govetto et al. described inner retinal features on optical coherence tomography (OCT), including
110	microcystic changes and ectopic inner foveal layers (EIFL), that may be prognostic of VA
111	improvement in idiopathic ERM. ^{9,10} In their study, an OCT staging scheme based on presence
112	and morphology of an EIFL (Figure 1) was well-correlated with best-corrected VA both pre-
113	and post-MP in eyes with idiopathic ERM.
114	To date, limited study has been dedicated to imaging-based predictors of VA outcomes in

115 eyes with ERM after primary RD repair, particularly when examining both outer retinal features

116	and recently described inner retinal parameters. The purpose of this study was to determine if
117	pre-operative inner-retinal features, such as microcystic changes and EIFL, and outer retinal
118	changes, such as ellipsoid zone loss, may be predictive of visual outcomes in eyes undergoing
119	MP after previous primary RD repair.
120	
121	Methods
122 123	The study was approved by the Institutional Review Board (IRB) at Wills Eye Hospital
124	(Philadelphia, PA). A waiver of informed consent was obtained by the IRB for this retrospective
125	study. The research adhered to the Declaration of Helsinki and was designed in compliance with
126	the Health Insurance Portability and Accountability Act regulations.
127	Subjects
128	A retrospective, consecutive review of clinical records was performed to identify subjects
129	who underwent PPV with membrane peel (MP) for ERM after PPV with or without scleral
130	buckle (SB) for primary RD in the same eye. Eyes were identified using Current Procedural
131	Terminology (CPT) codes 67041, 67042, and 67108 performed between January 1, 2015 and
132	January 1, 2018. Eyes were included if there was a minimum of 6 months follow-up after MP
133	surgery.
134	Exclusion criteria included more than one RD repair surgeries prior to ERM surgery, use
135	of silicone oil tamponade, previous pneumatic retinopexy, or eyes treated with SB only. Eyes
136	with RD after MP were excluded. Patients with uveitis or with concomitant macular pathology
137	including lamellar or full-thickness macular holes, central serous chorioretinopathy, branch or
138	central retinal vein occlusions, cystoid macular edema, diabetic macular edema, exudative age-

Journal Pre-proot

139	related macular degeneration, and intermediate or advanced dry age-related macular
140	degeneration were also excluded.
141	RD characteristics and details of RD repair surgery were recorded. Conventional, 3-port,
142	small gauge (23 or 25-gauge) PPV using the Alcon Constellation Vitrectomy system (Alcon,
143	Geneva, Switzerland) or the Bausch and Lomb Stellaris PC Vitrectomy system (Bausch and
144	Lomb, Bridgewater, New Jersey, United States) with or without SB was performed in all RD
145	repair cases. In regards to MP surgery, all eyes underwent small gauge (23, 25, or 27-gauge)
146	PPV. Dilute indocyanine green (ICG) assisted MP of both the ERM and ILM using 23-gauge or
147	25-gauge Greishaber ILM forceps (Alcon, Fort Worth, Texas, United States) was performed in
148	all MP surgeries. All post-operative complications noted at any point during the follow up period
149	were recorded. Data including intraocular pressure, slit-lamp biomicroscopy, and indirect
150	ophthalmoscopy at specified timepoints were recorded.
151	Visual acuity and OCT-based Imaging Parameters
152	Best-available Snellen VA with habitual correction or pinhole was collected at each of
153	the following specified timepoints: immediate pre-operative visit before RD repair, three months
154	after RD repair, immediate pre-operative visit before MP surgery, three months post-operative to
155	MP surgery, six months post-operative to MP surgery, and final visit.
156	Spectral domain optical coherence tomography (SD-OCT, Heidelberg Engineering,
157	Heidelberg, Germany) was performed at each timepoint and used for both quantitative
158	measurements and qualitative evaluation. Measurements of EIFL and central foveal thickness
159	(CFT) were performed using Heidelberg Eye Explorer (Version 1.9.13). The Heidelberg caliper
160	tool was used to measure the retinal layers in accordance with the International Nomenclature for
161	Optical Coherence Tomography panel definitions. ¹¹ The EIFL was identified in accordance with

162	the ERM staging system proposed by Govetto et al (Figure 1). ^{9,10} Microcystoid changes were
163	defined as small hyporeflective cystoid spaces in the inner nuclear layer not confluent with cystic
164	spaces in other layers and without a cyst wall. ¹² Ellipsoid zone disruption was defined as a non-
165	continuous hyperreflective inner segment/outer segment band, of any length, not induced by
166	shadowing. For qualitative variables, two masked graders (RS and RM) independently evaluated
167	all the OCT scans of the included ERMs. All disagreements were adjudicated by a third grader
168	(MAK).

The primary outcome measure was visual acuity (VA) and change in VA from prior to
MP to 6 month post-MP and at final follow-up. Secondary outcomes included OCT features
predictive of VA.

172 Statistical Analysis

173 All data were analyzed with SAS v9.4 (SAS Institute Inc., Cary, NC). Snellen VA was 174 converted to logarithm of the minimal angle of resolution (logMAR) values for statistical 175 analysis. Descriptive statistics were performed using mean and standard deviation for continuous 176 measures and proportions for categorical variables. Continuous variables were analyzed with an 177 independent two sample t-test. One-way analysis of variance (ANOVA) was used to compare the 178 differences in continuous variables between two or more groups. A Fisher exact test was used to 179 compare proportions. Univariate and multivariate generalized linear models were utilized to 180 determine the predictors of: (1) VA at pre-MP, (2) VA at 6 months after MP, (3) VA at the final 181 visit, (4) change of VA from pre-MP to 6 months post-MP and (5) change of VA from pre-MP to 182 final visit. For multivariate analyses, all predictors with p<0.10 in the univariate analyses were 183 initially included in the multivariate models, and the multivariate models went through the

backward variable selection by only keeping the statistically significant predictors ($p<0.05$) in
the final multivariate model.
Interobserver agreement for qualitative OCT variables was determined with Cohen kappa
coefficient calculation.
Results
A total of 53 eyes from 53 patients met the inclusion and exclusion criteria and were
included in the analysis. No patient had both eyes qualify for inclusion in the study. All eyes
underwent successful, single surgery RD repair and subsequent ICG-assisted removal of ERM
and ILM, as confirmed on post-operative SD-OCT.
Interobserver agreement for qualitative OCT variables, including ERM staging, presence
of microcystic changes, presence of EIFL, and ellipsoid zone disruption were found to be
excellent. The interobserver agreement and Cohen kappa coefficients are as follows for each
qualitative variable: ERM staging (interobserver agreement 89%, Cohen kappa coefficient of
>0.81), presence of microcystic changes (interobserver agreement 90%, Cohen kappa coefficient
of >0.81), ellipsoid zone disruption (interobserver agreement 84%; Cohen kappa coefficient of
>0.81), and presence of EIFL (interobserver agreement 100%, Cohen kappa coefficient of
>0.81).
Baseline characteristics, features of RD repair, and features at the time of MP are
described in Table 1 . In regards to macular status at time of RD repair, 14 (26.4%) eyes had a
macula-on RD and 39 (73.6%) eyes had a macula-off RD. 28 (52.8%) eyes underwent PPV alone
and 25 (47.2%) underwent combined PPV/SB for RD repair. Prior to MP, 3 (5.7%) eyes were
graded as Stage 1, 8 (15.1%) eyes as Stage 2, 8 (15.1%) eyes as Stage 3, and 34 (64.2%) eyes as

Stage 4. An EIFL layer was present in 42 (79.3%) eyes. Sixteen (30.2%) eyes were phakic prior
to MP. Of the 16 phakic eyes, 1 (6.3%) was Stage 1, 3 (18.8%) were Stage 2, 2 (12.6%) were
Stage 3, and 10 (62.5%) were Stage 4. Eight of the 14 eyes undergoing CE/PCIOL at the time of
MP were Stage 4.

211 Time-course of ERM development

ERM formation was first diagnosed on OCT at a mean of 91 ± 64 days [range, 15 - 289days)] after RD repair. The ERM was determined to be visually significant, defined as the visit at which the surgeon and patient elected to proceed with MP surgery, at a mean of 206 \pm 190 days (range, 45 -1151 days) after RD repair. There was an interval of mean 101 \pm 115 days (range, 0 - 458 days) between first diagnosis of ERM on OCT and the visit at which the ERM was determined to be visually significant.

218 Twenty-three (43.4%) eyes underwent MP surgery 180 days from the time of RD repair. 219 Of these eyes, 17 were macula off (73.9%), 19 were graded as Stage 4 (82.6%), 19 had 220 microcystoid changes (82.6%), and 17 had ellipsoid zone disruption on pre-operative OCT 221 (73.9%). There was no difference in macular status at time of RD repair (p>0.99) or presence of 222 pre-operative microcystoid changes (p=0.13) between eyes undergoing MP surgery 180 days and those undergoing MP surgery >180 days. Eyes with Stage 4 ERM were significantly more 223 224 likely to have MP surgery 180 days from RD repair compared to eyes with Stage 1, 2, or 3 225 ERMs, collectively (p=0.021).

226 Visual Acuity Outcomes Over Time and by Macula Status at RD Repair

Table 2 summarizes VA and change in VA outcomes at each timepoint for all eyes and stratified by macula status. Following ERM removal, VA significantly improved from the pre-MP VA at each subsequent time point. Compared to macula off eyes, VA was significantly

230	better in macula-on eyes prior to RD repair, at 6 months post-MP, and at final follow-up. At all
231	timepoints, change in VA from pre-RD repair was greater in eyes with macula-off RD compared
232	to macula-on RD.
233	Visual acuity outcomes by ERM Stage
234	Prior to the ERM removal, mean VA tended to be worse with higher ERM stages [Stage
235	1, 0.62 \pm 0.36 (20/83)]; [Stage 2, 0.72 \pm 0.43(20/105)]; [Stage 3, 0.84 \pm 0.52 (20/138)]; and
236	[Stage 4, 1.13 ± 0.50 (20/270), p=0.06]. There was no significant association between ERM
237	stage and VA at three months, six months, or at final visit after MP. There was no significant
238	association of ERM stage with change in VA from the pre-RD or pre-MP timepoint.
239	OCT structural thickness
240	OCT-based thickness measurements were assessed following MP surgery. Mean CFT
241	improved from 565 168 m pre-MP to 359 79 m at three months post-MP, an improvement
242	of 206 154 m (p<0.0001). Mean \pm SD outer nuclear layer (ONL) thickness improved from
243	132 96 m pre-MP to 101 56 m at three months post-MP, an improvement of 33 82 m
244	(p=0.01). In the 42 eyes with preoperative EIFL, the mean \pm SD EIFL thickness improved from
245	376 143 m pre-MP to 174 86 m at three months post-MP, an improvement of 202 142
246	m (p<0.0001). Among 42 eyes (79.2%) with EIFL pre-MP, 15 (35.7%) had full resolution of
247	EIFL at three months post-MP. Among 37 eyes (69.8%) with microcystic changes pre-MP, 11
248	(29.7%) had full resolution of microcystic changes at three months post-MP. Of 31 eyes (58.5%)
249	with ellipsoid zone disruptiom pre-MP, 22 (71.0%) did not have ellipsoid zone disruption at 3
250	months post-MP.
251	Predictors of VA

252	Factors associated with VA at the pre-MP timepoint are summarized in Table 3 . In
253	multivariate analysis, MP 180 days from RD repair and ellipsoid zone disruption retained
254	significance for pre-MP VA. In univariate analysis, presence of EIFL and CFT >550 m at the
255	pre-MP visit timepoint were both associated with a significantly worse VA; however, these
256	variables became non-significant in multivariate analysis.
257	Multivariate analysis of factors associated with VA and change in VA from pre-MP at 6
258	months and final follow-up is summarized in Table 4. Ellipsoid zone disruption and RD repair
259	with PPV/SB were significantly associated with worse VA at both 6 months and final follow-up.
260	In multivariate analysis of factors associated with VA change from pre-MP, undergoing MP
261	180 days from RD repair was significantly associated with greater VA improvement at both 6
262	months and final follow-up.
263	A complete summary of univariate and multivariate analysis associated with VA and
264	change in VA from pre-MP at 6 months is available in Table 5 (available at
265	https://www.ophthalmologyretina.org/). A complete summary of univariate and multivariate
266	analysis of factors associated with VA and change in VA from pre-MP at final follow-up is
267	available in Table 6 (available at https://www.ophthalmologyretina.org/).
268	
269	Discussion
270	Our retrospective, consecutive case series of eyes undergoing ERM surgery after retinal
271	detachment repair explored visual outcomes and the functional significance of OCT parameters
272	on predicting visual outcomes. In this series, we found an overall improvement in vision after
273	MP surgery at all timepoints, with similar improvement in eyes with history of macula-on and
274	macula-off RD. Furthermore, we analyzed outcomes using the ERM grading system established

by Govetto et al. ^{9,10} ERM stage trended with pre-MP VA (p=0.06) and presence of an EIFL was
associated with worse pre-MP VA (p=0.03) on univariate analysis. The OCT feature that best
predicted 6 month and final visual outcomes in eyes with ERM post-RD repair was presence of
ellipsoid zone disruption.

279 In our study, mean VA improved by 4.5 lines at 6 months and the final visit. These visual 280 outcomes were comparable to the 5.6 Snellen line improvement noted by Katira et al. and the 4 281 line gain noted by Council et al, which also evaluated outcomes of MP surgery after prior RD repair.^{2,13} Interestingly, no significant difference in VA existed between macula on and macula 282 283 off eyes at the pre-MP timepoint. Similarly, there was no significant difference in the degree of 284 VA improvement after MP between macula-on and macula-off eyes. This suggests that ERM 285 formation has a clinically meaningful effect on VA independent of macula status once ERM development has occurred. This finding is similar to that of Council et al, which found no 286 significance of macula status regarding change in VA from the pre-MP timepoint.¹³ 287 In previous studies, ERM occurred in 12.1% to 35% of post-RD repair eyes.^{14,15} Ishida et 288 al. found the majority of ERMs (76.9%) were diagnosed within the first 3 months postoperative 289 to RD repair¹⁴, while Katira et al found that of eyes requiring surgery for ERM after RD repair 290 the mean time to MP was 5.4 months.² Our study similarly reveals a brief period from RD repair 291 292 to first diagnosis of ERM and diagnosis of visually significant ERM (3 and 6 months, 293 respectively). Furthermore, our study suggests that ERM formation soon after RD repair is 294 characterized by a more severe disorganization of macular anatomy compared to idiopathic 295 ERM. In Govetto et al., only 12.6% of idiopathic ERMs were found to be Stage 4, whereas 64.2% of post-RD eyes in our study were found to be Stage 4.¹ Undergoing MP surgery 180 296 297 days from RD repair was significantly associated with Stage 4 ERM characteristics (p=0.021).

298	This may help explain the association between surgical timing, pre-MP visual acuity, and
299	observed VA improvement after MP in this study. Eyes undergoing ERM surgery 180 days
300	from RD repair had worse pre-operative VA (p=0.01) and greater visual acuity improvement
301	post MP (p=0.002) compared to eyes undergoing MP in >180 days. This greater, relative VA
302	improvement may represent a ceiling effect as eyes undergoing surgery >180 days from RD
303	repair had better pre-MP VA and, thus, less VA to be gained. However, the significant VA gain
304	in eyes undergoing ERM surgery 180 days from RD repair is encouraging, reflecting a benefit
305	to MP surgery even in eyes with early, more severe ERM characteristics.
306	Our study builds upon a recent series of publications utilizing a novel, OCT based
307	grading scale centered on the presence or absence of an EIFL to describe outcomes in eyes with
308	ERM. ^{9,10} Govetto et al found that the EIFL-based staging system could predict VA in eyes with
309	idiopathic ERM, with a progressive decline in vision from Stage 1 [0.02 0.6 (20/21)] to Stage 4
310	[0.61 0.26 (20/81)] (p<0.001). The presence of EIFL was significantly associated with lower
311	BCVA, (p=0.001) suggesting not only that the inner foveal microanatomy is particularly
312	susceptible to disruption in ERM formation but also that such disruption may profoundly affect
313	function. ⁹ In a subsequent study, the group evaluated the use of the staging system to predict pre-
314	and post-operative VA in eyes with idiopathic ERM undergoing MP surgery. ERM stage
315	(p<0.001), presence of an EIFL layer (p<0.001), and EIFL thickness (r=0.58, p<0.001) were
316	negatively associated with pre-operative VA. ¹⁰ Moreover, lower ERM stage was significantly
317	and positively associated with VA at all post-operative timepoints through 12 months [Stage 2
318	0.06 0.08 (20/23) vs. Stage 4 0.31 0.26 (20/41), p <0.001]. ¹⁰
319	In our study, EIFL presence was associated with pre-MP VA in univariate analysis
320	(p=0.03), but EIFL presence and thickness were not associated with pre-operative VA in

321	multivariate analysis. In addition, pre-operative EIFL presence and thickness were not significant
322	predictors of mean VA or change in VA at any timepoint on multivariate analysis. Unlike
323	Govetto et al., where Stage 3 and 4 eyes had the greatest change in VA after surgery (p<0.001),
324	our study found similar changes in VA amongst all stages and ERM stage was not associated
325	with post-operative VA at any postoperative timepoint. The lack of association between EIFL
326	presence or thickness with VA in our study may be a result of smaller sample size especially in
327	the Stage 1-3 groups, or may indicate that eyes with prior RD may have additional ultrastructural
328	changes, in addition to EIFL thickness, which are of more predictive value compared to eyes
329	with idiopathic ERM.
330	Our work emphasizes the importance of outer retinal layer disruption as a key
331	prognosticator of function. Ellipsoid zone disruption pre-operatively was the single OCT feature
332	in our study significantly associated with pre-MP and post-MP mean VA. The significance of the
333	ellipsoid zone in determining visual acuity in post-RRD repair eyes has been previously noted by
334	prior authors. ^{8,16} Wakabayashi et al. evaluated OCT microstructural changes in eyes undergoing
335	primary RD repair and found that only macula-off eyes had disruption of the ellipsoid zone
336	(p<0.001) and that post-operative ellipsoid zone changes were associated with post-operative VA
337	(r=0.805, p<0.001). ¹⁶ Theodossiadis et al. found that ellipsoid zone loss pre-operatively was a
338	significant predictor of final VA at 6 months after MP. ⁸ From these studies and from our own,
339	the disruption of the ellipsoid zone may indicate structural and functional damage to
340	photoreceptors that contribute to visual prognosis post-RD and post-MP repair.
341	Limitations of this study are inherent in its retrospective nature. Use of Snellen visual
342	acuity with habitual correction or with pinhole and without refraction may have underestimated
343	VA outcomes. Our sample is weighted to a higher proportion of patients with Stage 4 ERMs,

Journal Pre-proof

Soares, et al. / ERM surgery after RD repair / 15

344	which may lead to an underestimation of visual potential in post-RD, post-MP eyes. Moreover,
345	eyes in this sample were chosen for MP surgery based on surgeon discretion, and selection bias
346	against eyes with poorer visual potential post RD may be present. While lens status was not
347	significantly associated with VA or VA change at final follow-up, the fact that the majority of
348	phakic eyes had Stage 4 ERMs could have diminished the significance of VA differences by
349	ERM stage. Possible factors contributing to the severity of ERM or visual impairment, including
350	the intensity or area encompassed by laser or cryotherapy treatment during RD repair, were not
351	quantified in the present study. The strengths of our study include characterization of OCT
352	markers using SD-OCT in all cases, standardization of surgical technique across surgeons, and a
353	relatively high case number of eyes undergoing ERM peel post RD repair compared to prior
354	studies of a similar population.
355	Eyes undergoing MP after RRD repair did exhibit substantial visual gains post MP,
356	regardless of ERM stage and macular status at time of RD repair. While presence of an EIFL has
357	been previously associated with pre-operative and post-operative visual acuity in idiopathic
358	ERMs, ^{10,12} ellipsoid zone disruption was the OCT biomarker most associated with pre-MP, 6
359	month, and final VA in eyes with prior history of RD repair. Larger, prospective studies are
360	needed to further evaluate the utility of inner and outer retinal OCT alterations on predicting
361	function in ever with secondary FRM after PD renair

361 function in eyes with secondary ERM after RD repair.

Figure 1: ERM staging system as based on optical coherence tomography ectopic inner foveal layer (EIFL) presence and disruption of inner foveal layers.^{9,10}

A- Stage 1 is defined as the presence of ERM with minimal disruption in inner foveal contour. B-Stage 2 is defined as the presence of ERM with loss of inner foveal contour but no EIFL. C-Stage 3 is defined as the presence of an EIFL but clear distinction between all retinal layers. D-Stage 4 is defined as the presence of an EIFL but loss of distinction between retinal layers.

Journal Prest

burnal provide

13. Council MD, Shah GK, Lee HC, Sharma S. Visual Outcomes and Complications of Epiretinal Membrane Removal Secondary to Rhegmatogenous Retinal Detachment. *Ophthalmology* 2005;112:1218–1221.

14. Ishida Y, Iwama Y, Nakashima H, et al. Risk Factors, Onset, and Progression of Epiretinal Membrane after 25-Gauge Pars Plana Vitrectomy for Rhegmatogenous Retinal Detachment. *Ophthalmol Retina* 2020;4:284–288.

15. Banker TP, Godfrey KJ, Reilly GS, Weichel ED. Epiretinal Membrane Peeling After Uncomplicated Primary Retinal Detachment Repair. *Ophthalmic Surg Lasers Imaging Retina* 2014;45:415–420.

16. Wakabayashi T, Oshima Y, Fujimoto H, et al. Foveal microstructure and visual acuity after retinal detachment repair: imaging analysis by Fourier-domain optical coherence tomography. *Ophthalmology* 2009;116:519–528.

Johnalbrei

Table 1: Baseline characteristics of study subjects and study eyes undergoing membrane peel after primary rhegmatogenous retinal detachment repair.

Age (years)

CE/IOL= cataract extraction/intraocular lens insertion. ERM=epiretinal membrane. EIFL=ectopic inner foveal layer. MP= membrane peel. PFCL=perfluorocarbon liquid. PCICL=posterior chamber intraocular lens. PVR=proliferative vitreoretinopathy. RD= retinal detachment. SB=scleral buckle. SD= standard deviation.

Table 2: Visual acuity and change in visual acuity at each time point as stratified by macula status.

Timepoint

All eyes (N=53) Macula status Off (N=39) Mean 🛛 SD in logMAR (Snellen)

Mean 🛛 SD in logMAR (Snellen)

ournal proproof

Table 3: Analysis of variables associated with mean visual acuity at the pre-membrane peel surgery visit.

ld wit-

* From the generalized linear model with a specific predictor in the model.

** From the generalized linear model with all statistically significant predictors in the final model.

CFT=central foveal thickness. EIFL=ectopic inner foveal layer. MP=membrane peel. Pre-op= pre-operative. PPV=pars plana vitrectomy. RD= retinal detachment. SB=sderal buckle. VA=visual acuity.

Table 4: Factors associated with visual acuity and change in visual acuity from pre-MP at 6 months and final follow-up in multivariate analysis.

* From a generalized linear model with all statistically significant predictors in the final model.

CFT=central foveal thickness. EIFL=ectopic inner foveal layer. MP= membrane peel. Pre-op= pre-operative. PPV=pars plana vitrectomy. RD= retinal detachment. SB=scleral buckle. VA=visual acuity.

Journal Pre-proof

Precis:

Eyes undergoing epiretinal membrane surgery after prior retinal detachment (RD) repair have significant visual acuity gains independent of macula-status at time of RD repair. Pre-operative ellipsoid layer disruption was the OCT feature best predictive of final visual acuity.

. or tinal visual a

AMERICAN ACADEMY™ OF OPHTHALMOLOGY

Ophthalmology®, Ophthalmology Retina™, Ophthalmology Glaucoma™, and Ophthalmology Science™ Author Contributorship Statement

The journal adheres to the Uniform Requirements set by the International Committee of Medical Journal Editors (http://www.icmje.org/) for authorship. To qualify for authorship, authors must make substantial contributions to the intellectual content of the paper in each of the four following categories:

1. Substantial contributions to conception and design of the work; or the acquisition, analysis, or interpretation of data for the work; AND

2. Drafting the work or revising it critically for important intellectual content; AND

3. Final approval of the version to be published; AND

4. Agreement to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

It is the responsibility of the corresponding author, prior to submitting the manuscript, to confirm that each coauthor meets the requirements for authorship. Please list all authors of the manuscript on the Contributorship Statement form below. The form need not be uploaded at the time of original manuscript submission but rather if/when the Editorial Board invites revision.

By submitting this form, the corresponding author acknowledges that each author has read the statement on authorship responsibility and contribution to authorship. In the table below, please designate the contributions of each author. Any relevant contribution not described in the four columns can be added under "Other contributions." Please note that the list of contributions will publish with the manuscript should it be accepted. Thank you.

TITLE OF ARTICLE:

AUTHORS:

AUTHORNAME

bonula