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Thin flexible tubes of transparent material capture light at one end and
keep it “trapped’ inside by total reflection until it reaches the other
end, where it is allowed to exit. The beauty of these “light pipes’ is
they can be bent into unusuai shapes and the light will follow the bends,
seemingly in defiance of the principle of linear propagation of light.
Not aonly can the light emitted at the end of such a “’pipe’ be used as
an ilumination source for dark recesses, say, of the inside surface of
the stomach; if properly constructed, optical fiber bundies {created by
thousands of very fine, perfectly aligned, closely packed tubules} can
allow sharp visualization and photography of these same, hitherto un-
seeable areas. New endoscopic applications for these fiber optic
bundles are continually being discovered.

You should also know that the visual cells (rod and cone} outer
segments ‘‘trap” light via this same mechanism of total internal reflec-
tion and thus permit more efficient utilization of light entering the eye.

‘% Prismatic Deviation

So far, we have explored the refraction of a single light ray by a
plane surface separated by two different media. Now let us follow a
number of these rays which leave an object point.

4T A LENS
SYSTEM

AlR;n =1
WATER; 1 =1.33

IMAGE POINT -

Py
0BJECT
POINT

Object point X is immersed in water. The light rays from X are
shown; each is bent appropriately (Snell’s Law) as it leaves the water.
These rays will seem to emanate from point X’ {in a straight line path)
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y optical system {camera lens or a uman eye) which intercepts
\them. Paint X’ will seem closer and not as deep in the water as the
_iﬁiria'l point X, and accounts for the “‘displaced’” position of objects
-are under water. The greater the viewing angle  makes with the
rater, the greater the apparent displacement. But, even if the view is
i'lié’;:tly perpendicular to the surface, the image point X’ will still seem

niyon n

A
!.rf"'..

EYE SEES X

3 If the sheet of glass has 2 paraliel faces and a ray strikes along the
“normal’’, there is no deviation of this ray.

: ‘- B} If the glass plate is tilted so that the “normal’* makes an angle i to

the incoming ray, the ray will be bent towards the normal inside the
glass and then away from the new normal as it exits again.
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C) To an eye looking through the glass at rays from point X, the
object will appear closer and displaced, as if it were situated at
X', This is prismatic deviation {or displacement). To an observing
eye, this type of deviation will appear to be much more pro-
nounced for near objects than for distant ones.

Refraction by two plane non-parallel surfaces: If the sides of the
glass are not parallel, we have a “prism’’; there will always be a
deviation imparted to any incoming ray.

A) If a ray strikes the first face along its normal, it will continue
without angulation until it strikes the second face, when it will be
bent away from its surface normal; as shown above, the total
angular displacement is &.

BY 8 will be minimal for any given prism when the ray travels
symmetrically through the prism, so that the angle of incidence on
face 1 is equal to the angle of refraction from face 2.

C) If the prism is pivoted further so that the ray proceeds through the
prism asymmetrically again, the deviation of the ray will increase
from the minimum shown in B.

In general, then, the capability or effectivity of a prism in bending
rays is indicated by its “power’”’, which is usually measured in prism
diopters. The “power’” is that which causes the “minimum’® angular
deviation, though we should now realize that the prism’s power is not
absolutely fixed and varies a little as you tilt or pivot it. {The variation

62

with tilt is greater with prisms of higher power. From this you can
draw the following ctinical conclusion: if you desire an accurate
measurement of a phoria or a muscle weakness, especially if you are
using higher powered prisms, you must hold the testing prisms
§E|uarely — not tilted — in front of a patient’s eye.)

Aside from the effect of tilting the prism, for most practical pur-
ses, you should consider the induced deviation for any clinical
ism as constant, that is, {see figure below) if you sight an object X
rough the prism, there will be an immediate but fixed apparent
splacement of that object to X'. If you continue to sight while mov-
g the prism up and down along its base-apex dimension, that object

‘The fact that an object does not appear to move in this situation tells
“us that there is no spherical power incorporated along with the prism
ower; apparent ~‘movement’”’ would occur if there were refractive
{vergence) power present. We will later learn how to “hand neutral-
; ‘ize’" unknown corrective lenses by using this “movement” technique.
. Apother point about prisms: when you look through one, you
hould also discern that distortion is introduced — straight lines
~ may look curved and parallel lines may appear 1o diverge. Actually
'_h_rge different types of distortions are introduced by prisms and each
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has its own characteristic optical basis.* Sufficient for us is simply
knowing that prisms induce distortion in addition to the object dis-
placement,

n another short digression. we initially mentioned that the re-
fractive index of any material varied not only with the material itself

but with the wavelength of the incident light. Thus, if light composed
of many wavelengths falls onto a prism such as that shown below,

each of the component wavelengths is refracted a different amount;,
the shortest wavelength (blue light} is bent most, and red, the longest
wavelength, the least. This is the chromatic dispersion you saw when
you played with prisms in nursery school. It is an important occur-
rence and is the physical basis for the “chromatic aberration” of all
optical systems.

Practical use is made of this ‘‘aberration’ in an instrument called
the spectroscope (for physico-chemical analyses) and clinically, in
the ~“Bichrome” or *'‘Duo-chrome” test, to be explained later.

“WHITE" LIGHT
COMPGSED OF
VARIOUS
WAVELENGTHS
RED
YELLOW
BLUE

PRISMATIC DISPERSION

The extensive foregoing discussion then, explaing how prisms
work and how Snell’'s Law governs ray deviation and object displace-

ment. In summary. the basic prism “power’ is derived from two
factors: how steeply the flat faces of the prism abut and the index of

refraction of the prism material itself. (The greater the index, the.

greater the overall power.)

* {(See Optics, by Ken Ogle, Thomas. 1366, p. 74-5})
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Ophthalmic Prisms

. Realize that in using prisms in ophthalmology, the eye must pivot
I(é‘l:i‘o t its center of rotation) to follow the displaced images. Though

! direction of displacement is always toward the prism’'s apex,
positions are typically given {just to confuse you) by their base
tions! A 10 prism diopter base-down prism would displace an

ce, {or 25 cm for a distance 2.5 meters away}. The eye must
upwards to fixate the displaced object. {See diagram.)

b | meter —

2.5 meters

Ophthalmic prisms come in various forms:
t 111} single, loose prisms of varying powers.
;ﬂff/g) bar_ptisms — a graded series of prisms mounted on a stick.
sually, they are constructed so that when the bar is held vertically,
“they introduce a horizontal prismatic effect. Bars introducing vertical
prisis are also available.
) A "Risley’ prism — which is of continuously variable power.
:1s constructed with two 152 prisms mounted so that by turning a
'l'ﬁl.’g;knob, you rotate both prisms equally, but in opposite directions.
is: maintains a resultant prism activity in one primary direction.
en the prisms are fully aligned (with their bases pointing in the
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URVED SURFACE REFRACTION

same direction). their two powers are additive and will yield 304
(see A below). If they are rotated so that the apex of one falls on the
base of the other, the resultant prism power is 03. (See B.) Partial _ Let us now investigate how curved surfaces might act on light
rotations yield the “in-between’” powers {see C). This tool is ex- ays.
tremely handy and is supplied commercially on almost every type of
refracting unit made for clinical purposes.

Do not allow this one derivation to scare you away. Bear with
nd do make an effort to go through it. It is not tough despite
“use of a few mathematical symbols. Actually, you may find it is
o learn exactly how your useful formula, U + P = V, is derived.
Hewever, those readers who find even simple mathematics abhorrent
1 proceed to skip over to page 71.

THE RISLEY PRISM

avex ‘ |

o see what happens at a curved surface, two points must be
o rected from your geometrical background:

8 " a} the exterior angle of any triangle equals the sum of the oppo-
8 ? two interior angles:

[
1
RESLLTANT

BASE

b} The “normal” (perpendicular) to a spherical surface is any
which passes through the center of curvature of that surface. If
the center of curved arc AB, the line shown is considered
mal’’ to that surface:

4} Fresnel prisms — to be covered later.

We have now covered sufficient detail to understand the proper-
ties of refraction by plane surfaces and how Snell’'s Law supervises
this activity.
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AXIS C X

-
-

-1

if this ray did not hit the surface, it would continue to travel and
intersect the axis at point X. The distance to X (measured along the
axis) is object distance u, and the angle this ray 1 makes with the
axis is a.

To point P from €, we draw a line; this is “normal’’ to the
surface. The “normal” makes angle 8 at C, and incoming ray 1 makes
angle i with this “normal”. Angle i is the “angle of incidence’’; it is
equal to its vertical angle (created by two intersecting lines), shown
below as one angle of triangle PCX.

Since 0 is an exterior angle of PCX,
f=a+i
So, i=f—a

Ray 1 will be refracted by the surface and bent toward the
“normal’’; the “‘angle of refraction’” is now i’{next tigure.)
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4.is also an exterior angle of triangle PCX’, so
=i+ a
and F=0—da
‘have shown, then, that
f=0—a
i"'=f—a

our simplification of Snell’s Law for small angles,
ni=ni

“substituting for { and i",
ni=nlf—al=ni=n{—0a)

‘will call the fallowing, FORMULA 1:
nf{f—a)=n (0 —a)

P

: -of that surface. Assume point P is at a distance h from the axis.

When P is relatively close, that is, when A is short, @ will be a small
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angle, and h will just about be equal to the length of the arc sub-
tended by #. So, in radians,
LS
A
From the previous set of diagrams, and using the same reasoning,

you can see that

WREKA! This is the general relationship for a single spherical refract-
n
g surface. It ties together object vergence (—-J-), image vergence

n" —n .
; ). Starting to

and the refracting power of the surface {

. like something familiar? It should!

o — L i
; a
al"ld = ?‘ ln—= V

To eliminate consideration of the actual angles themselves, {0, o', ‘ Y
and a), we can substitute the equivalent expressions for the angles Tl pr
into FORMULA 1: u -ir- P=V

nid—a) =n' (0 —a') When we talked about our simple, thin lenses and their vergence

h h h h ; . s, the refractive indices of the media on both sides of the lens
L (T—T) =-n (T—"‘;‘) G 'w’g identical — n and n’ were equal to 1.0. If, however, the media
are not air, we must take account of the indices, since they influence

Factoring out A, B . LI
“the object and image vergences; U/ does not equal - it equals

i Ly p L2y :
= T v : 1 . n’
r u d v and V does not equal - it equals -
Dividing by h,
Originally we declared that the power of a lens P was a certain
number of diopters; we should now see that the total lens power of
uch a lens depends on its two surface powers, each in turn is de-

~ pendent on its own radius of curvature and a difference in index of

1 1 .11
(Bt U Bt

Multiplying this out,

L_A_0_ Ll " refraction. Suffice it to say that with thin lenses, the powers of each
d u r v of the two surfaces simply add together algebraically. A 4 5 D front
Regrouping, ace and a + 3 D back surface sum to a +8 D of total power.
_!_'.':____n_= ."_'_i Similarly, a + 7 D front sutface and a — 1 D rear surface would vield
v u r r 476 D of total power. (This latter tens is like most ophthalmic cor-
. " n n—n ive lenses in that it is meniscus-shaped, that is, it has a concave
Since T T =TF " surface facing the eye.) So, in general, Puu = Py + P.. This is for
. . “thin lenses. With thicker lenses, however, there is a third, thickness

Then n__ n o= LS d .
v u r agtor {— {P\) (P:})] which must be subtracted from the sum of the
Or s + n—n = n_' NOTE: To maintain our light convention, r is considered plus if the light {meving
u I v from left to right} strikes a convex surface and minus if it hits a concave

surface.
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surface powers 10 arrive at the true "“equivalent’” lens power. You'll
not be dealing with thick lenses in this course.

Recall | said you had to know only a few basic formulas? Well,
here's another of them:
n" —n
r
memory. It tells you that when r is small, the refractive power of the
curved surface is high; if r is large, then the power is low: if it is
infinitely large, the refractive power is zero — a flat plane is just

such a surface, with no vergence power.

is the refractive power of any surface. Fix it in your

PROBLEM:

a) What is the refractive power in air of a polished convex
surface of a glass rod {n = 1.5) of radius 10 cm?

b) What happens to the power of that same glass rod after im-
mersing it in water {(n = 1.33)?

ANSWER:
) P=n——rr___1.!‘)0--*1.()0:_.@
r + .10 10
= 4 5 Diopters
~15-—133 .47
b) P=—35—=T0

P = 4- 1.7 diopters; thus, the refracting power of the rod
has decreased by placing it into water.

1 1
When we spoke of thin lenses, P =— = !
Single surfaces also have focal Iengths, and we can use the same
reciprocal relationship to power to determine those lengths as we
did above, but we must also take into account the refractive indices
of the object and image spaces.
n n
Pt = F=F
This means that if an air-to-water interface has + 5 Diopters of sur-

= 0.20 meters or + 20 cm; however,

face power, the f in air is +15
the ' in the water (the position of sharp focus of an object tocated
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at infinity} = 1_,_32 = 26.5 cm to the right of the surface.

This shows that, if the medium on one side of a surface is air, the
secondary focal length in the denser medium is n’ times the primary
~ Hocal length: £ = n" ; this will prove to be a useful relationship.

Summary: In any calculations dealing with lens and surface refrac-
tion, do not forget that any object and image vergences depend not
anlv on the actual distarices from the reference plane, but also on the
refractive indices of the object and image spaces. We will further
‘explore these concepts when we study the model eye.

'‘PROBLEM:

i An object point X is located in a water tank and is 40 cm away
from the end of that tank, which has a concave surface of 5 c¢m
radius. Air surrounds the tank.

a) Where is the image point formed?

b} How long are the primary and secondary focal lengths of the

refracting surface?
WATER ;{m
x“*\-,___‘ i‘/ xl

f———40cm

- ANSWER:
a) U+P=YV
U: The rays are diverging from X as they strike
the curved surface, therefore, the vergence
is minus at the surface.
The index or refraction of the object space is
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that of water or 1.33. Thus, U, the object
nw.‘.t‘

vergence = — — R
g u 40 meters
—3.33 D._

P: The difference In index of refraction referred

s

n—n. . .
to in is always the index of the image

space minus the index of the object space:
Here. (M — e} = 1.0 —1.33 = —0.33.
r=05 cm = (.05 m) but is copcave to the
light traveling from left to right, and there-

tore minus. r = — 05 meters.
n—n —033
So, ——=T"008 — + 6.6 D.

{Thus we see that a concave surface has plus
refractive power when the index of the image
space is less than the index of the object
space.)

r

V: The vergence of the image rays = nT: n’ here

is that of the image space which is air: thus,
n=10
1

.

v

Now, solve equation for V:

U + P =V
_, Fluster {rae — n.m..) - -IE
u r v
_1.33 1—1.33_l
40 — 05 v
—3.33 4 6.60 =-%-
4327 = —
T T

v = + 30.5cm

There will be a sharp image of X at X', which is located 30.5 cm
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10 the right of the refractive surface [which is the water tank side).

A Flwaiw 1.33
b) The primary focal length = —5= = —=
f = + 20 cm in water.

N 1 .00
The secondary focal length = =5~ = T66

f = 15.1 c¢m in air.
(Both are measured from the axial vertex of the spherical surface.)}

{See Appandix A for a discussion of the intluence of the refractive indices of the
‘ohijsct and image spaces on the linear magnification.)

ASTIGMATIC REFRACTION

_ Compared to other icebergs in the sea of optics, astigmatism
jalways seems to offer the student a bit more of a challenge — an
‘obstacle to otherwise smooth sailing. The teaching technique which
will serve us as radar to neutralize this impediment has in the past
proved to be a most useful one; it allows a firm grasp of the subject
_ now while encouraging easy recall /ater. {In my opinion, it is probably
~ Paul Boeder's greatest contribution to optics pedagogy}. it presents
one particular way of looking at the relationship of the refractive
~ ;power of a cylindrical lens to the orientation of the astigmatic hine
_images formed. But that's getting ahead of our story; we will come
Back to this shortly.

In our elucidation of U + P = V, we iearned that P was the power
of a spherical surface, that is, one with one radius of curvature. If
- we neglect the lens aberrations of 3rd order optics, that spherical
. surface can form a point image for each object point. In this type of
point-for-point correspondence, the image is said to be stigmatic
{point-like). However, not all surfaces are spherical and those that
* are not, do not usually form stigmatic images. One such surface is
~ called toroidal — a particular type of nonspherical surface which forms
rian-stigmatic images. but does so in a certain way. It is only for those
images that we reserve the term astigmatic {not point-like}.

A toroidal surface is exemplified by the surface of a doughnut.
It has two fixed radii in contrast to only one for the spherical surface
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and can be completely described by those two radii. Let us diagram a
complete doughnut (torus}:

A. WHOLE

B. VERTICAL SECTION C.HORIZONTAL SECTION

H we cut it in half vertically, we will see two small circles along
the cut face (figure B above). Each circle can be described by a
radius, r.

Compare this, instead, with the torus sliced in half horizontally
{figure C above}. The cut face now also shows two circles, an out-
side one of radius r: and a smaller, inside one of lesser radius n; we
will ignore the latter one. Al this about doughnuts is nice if you're
hungry, but what we're interested in is a description of its outside
surface. It is the shape of that front surface that is called toroidal. It
is this specific surface which, when treated as a refracting surface
{by definition), forms astigmatic images.

We can describe the outside surface of the torus as one which is
created by the rotation of two radii of unequal length, each in a plane
at right angles to the other.
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As shown in the figure, n lies in the vertical plane while r. is in the
horizontal piane. r, and r: do not have the same center. Their respec-
tive centers, however, do lie along a line called the axis of rotation
{which is not the cylinder axis).

Let us look at each of the two planes drawn in the figure. The
curve representing n is a smooth circular outline present in the
vertical plane. r. and its corresponding circular section are located in

the horizontal plane. Each of these shouid be considered separately,

completely independent of one another.

Look at the curve generated only by r in the vertical plane. If it
happens to separate two media of different refractive indices, we
can calculate its surface power. So, in the vertical plane,

P1 E=i n’ .
3]
and for any object vergence U we can find the carresponding image
vergence V.

tU + PI — VI).
We can do the same for r: in the horizontal plane, and find P., and

calculate V.. So, any object vergence U which impinges on the

taroidal surface generated by 1 and r: will be influenced differently by
P. and P. each of which act in separate planes which are at right
angles to each other. We are forced to the conclusion that for any
given object vergence, a toroidal surface must create two separate

77



images. It is this composite image which is called astigmatic.

We can locate the position of certain parts of the image formed
by our toric surface by using U -+ P = V as just shown, But what does
this peculiar astigmatic image look like? To find this out, let us In-
vestigate the optical effect of a toric surface other than that of the
doubly-curved doughnut; let us use a straight vertical cylinder (as that
shown in the accompanying diagram A below), which also happens
to be a toric surface, but one with one of the radii, r., as infinitely
long. (If r; were slightly shorter than “infinitely long”. you should see
that we would have a cylinder which was part of a very large dough-
nut with a tremendous hole [Figure B].}

A

V2

/0‘

T

slice off a thin vertical piece of the cylinder {shown

In any case,
shown in diagram A below.

in A above) and it will look like that
Then slice the vertical slab into horizontal segmen

like a stack of thin. plus lenses (figure B}.
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ts; these will look

Each one of these thin, plus lenses will have the same refracting
‘power, P\*, say, + 5 D. If we put an object point 5¢ cm in front of
g hs stack, each thin single “lens”” would form a point image (see figure
‘below). Where is this point image {X') iocated?

U+ R=V
—24+5=43
So, gach point image X' will be 33 cm away. Since every one of our
lices will also form its own point image of X, the final composite
mage of X will have to be a series of X' positions oriented in a
.t'fa'ight vertical line. We say that our complete right angled cylindri-
al lens forms a real vertical line image at X'.

Py tefers to the power in the horizontal plane {whera ry is located) as shown in the
jagrama above.
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Note the vertical line drawn through the center where n originates.
That dotted line is called the cylinder axis. The distance from that
line to the cylinder surface is rn and, of course, is one of the variables
which gives refracting power to that surface. This power of P: diopters
lies only in the horizontal meridian as shown. The axis, however, is
vertical. in ophthalmologic jargon, we say that P is the power
associated with the vertical axis (at 90°), or, in shorthand, P, x 90°.
So, tying these concepts together, we have learned that the cylinder
power P, X 90 creates an image which is a vertical line. {Keep the
association “vertical line image and axis 90°" sharply in mind.) Such
a vertical image line is produced for each and every object point.

Let's look at another right cylinder but of a different, longer r.
Again, shave off one face and turn it so that its axis (the locus of all
the r: centers) runs horizontally. Further, slice this piece vertically so
that our siab is now composed of a series of plus lens segments
stacked side by side {as shown}.

When point X is imaged, each of these lens segments will act to
form a point image X'; when all are considered together, a horizonta!
line image is composed.

Since we chose r; to be longer than r., P will be of less power than
P, in the last example: let's arbitrarily say P: is + 3 D, that is, each
vertical slice (representing P; in the vertical —90° meridian} has
plus lens power of + 3 D.

With object point X located 50 ¢m from this cylindrical lens,
U=—-2D.
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U+ P=V
—24+3=+1

Thus, the location of the horizontal line image is 1 meter away
. from the lens. And again we see that power P, though it acts in the
- wertical meridian, is associated with a horizontal axis (that is, Px X
. 180°) and so, focuses a horizontal line image.
In both the right cylindrical lenses considered so far {the
33 x 180 and the 4+ 5 X 90 we looked at initially). we dealt with

the. power in only one of the meridians — that exerting + 3D and
4+ 5D, respectively. Any and every cylindrical tens will, however,
always have two "major” meridians — one with maximal spherical
pewer and another {at right angles to it} of minimal power. Each of
these major meridians will form a line image, so, there will always be
two line images formed by any cylindrical lens. In our examples
~ gbove, we showed you the location of only one of them. Where is

“the' other hidden? To find out, let’s examine our second lens
(+ 3 x 180). shown in the last diagram, and specificatly look at the
‘meridian which is responsible for imaging the vertical line —-that is,
the horizontal meridian.
We had sliced this lens into vertical segments to study the
vertical meridian, so now let’s cut the slices horizontally to examine
~ the horizontal meridian, {see figure below). Each one of the horizontal
siices of this segment would vield a piece of material with parallel
“faces having no curvature and, therefore, no refractive power; thus,
‘we can conclude that the horizontal meridian {180° meridian}, which
aiso happens to be the direction of our cylindrical lens axis, has no

power.
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Now. locate the vertical image line with the object point still
kept at 50 cm.
Ut P =V
—240=-2
Thus, the vertical line image, which we know must be present with
this cylindrical lens, is optically located at the same position as the
object point {but, in the image space).

The Maddox Rod

This somewhat surprising finding forms the basis for one of the
most useful of optical tools -— one which you will probably use.
every day — the Maddox Rod. So, pay attention and please follow
through the next few optical diagrams. These will enable you toi
understand how this instrument works., We will use the same right
cylinder P: X 180 as above and diagram the object and image rays:
originating from object point X.

In the series of diagrams, object point X lies on the optical {not
cylindrical) axis of this lens. Select 4 rays emitted by point X towards
the 4 corners of our right cylinder whose axis is horizontal — first,
rays 1 and 2 (diagram A). These rays lie in a vertical plane on the
far side of the lens and are converged to X'. by the lens. in the ;

-

image space, these rays will remain in the same vertical plane as oLant
they were originally. _____,-—-—“—" w
in diagram B, rays 3 and 4 lie in another vertical plane on the ; s % :_-_:"' . §§
near side of the lens and are also converged, but to a point X' = oP w:ﬁ_ T i
. . . . RS VERTICAL LINE, "‘;E ]

We have already seen that the composite image of X is a horizontal WTERSECTioN OF ™o AT P
line. X' and X's. are the point extremes of this horizontal line image. Xy o

All converging rays (in the image space} can be extended back-
wards. Let us do so from X4. {diagram C). These extended rays
(as shown) will form a triangular shaped, vertical piane with the
apex at point X's« and bounded by image rays 3 and 4. These rays
will lie in the same plane as the object rays 3 and 4, since objects
and images always lie in the same plane. Object point X will, of
course, also lie in this plane. {Diagram D shows a side view of this
vertical plane, with pertinent positions labelled}.

Eollow this same procedure for object and image rays 1, 2 and
t X2 This will create a different vertical plane, but also will
de object point X. These two verticai, triangular planes will
sect in a vertical ljne located at the same position of object
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You can see this somewhat more easily if you look down on the
diagram from the top (diagram E).

If we now draw the full optical diagram {see next figure}, you
should be able to understand how each of the rays is projected.
Note the virtual verticai line image, which must be located at the
same position as object point X {but in the image space}. This
vertical line image is virtual and cannot be focused on a piece of
paper; however, it can be photographed or seen, but only when looked
at through the cylindrical lens towards object X.

IIPESS

\POSITION OF VIRTUAL
VERTICAL LINE IMAGE

This rather long preamble is necessary for you to understand the
Maddox Rod: this instrument is simply a high-powered plus cylinder.
If held in front of an eye which is looking at a point source of light,
and if the cylinder axis is horizontal, the lens will create a real
horizontal line image close behind the lens. However, since the eye
is very close to the lens, the horizontal line cannot be seen; (it is
too close to be focused upon). The eye then will see the virtual, vertical
image line apparently located at the object point. {Usually, the object
light is distant, but it may also be nearby, as it was in the previous
diagrams — in either case, the vertical line image will always be
located wherever the object light is).

In practice, instead of using a single, high powered cylindrical
lens, 2 series of high powered cylinders are stacked side by side with
their axes aligned as shown below. This will make the vertical line
image appear longer, and therefore, more visible to a patient.
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MADDOX ROCD

The Maddox Rod is used to measure extraocular muscle balances
and phorias. When it is presented to one eye, the rod makes a line
image visible to that retina while the point light source itself is
seen by the other: this “"breaks fusion’’ between the two eyes and
_ permits them to settle into their tonic {relaxed) positions. Thereby,
any tendency to ocular misalignment can be detected and, if present,
measured. This is done by determining {in prism diopters) the angular

separation which appears to exist between the two dissimilar images.

This detailed elaboration of the imaging of an object point by a
cylindrical lens should have made the following quite clear: even a
1ens which has no power in one of its primary meridians will form two
line images and each line image will be parallel to one of those
srimary meridians.

The Astigmatic Cross Diagram

So far we've dealt with the real image line formed by a simple
‘cylindrical lens. We paid more attention to the axis than the power
“imince it was the axis that had the same orientation as the image line.
However, the lens power belonging to that axis is what actuaily places
_that line at some definite location within the image space. So, let's
w discuss not the image line but the cylindrical lens itself.

 *When | talk about a cylindrical lens, say P. X 180, | mean one
which has a maximum refractive power of P.; though it functions by
tting the horizontal image line into some position, that power is
ocated in {and acts in) the vertical meridian, that is, at 90°. Note
hat | said “‘meridian’. | can talk about a certain meridian because
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| wish to identify one specific direction. This direction does not
automatically associate with any particular lens power; it could be
zero if it happens to represent the location of the axis, or it might
represent any other sectional power of that lens. In this lens
{P: X 180), the vertical meridian (at 90°} represents the plane which
contains power Pa.

This same information can be written as "P; acts in the vertical
meridian”, or “P: is iocated in the vertical meridian’’ or more simply
“P, @ 90°"" — all these are equivalent expressions. Furthermore, |
can draw a '‘cross’ diagram (which portrays the two major lens
meridians) and label P: along the vertical meridian (see below}.

This lens’ axis {x 180°) is located in the horizontal plane of
the lens and is shown in the diagram as being present along the
horizontal meridian with “zero refractive power”.

Thus, any lens can be shown an a “cross’’, with two major
meridians labelled. A spherical lens would show both of these
meridians labelled with identical powers. Any “‘cross” which shows
“zero power” along one of its major meridians must clearly be a
simple cylindrical lens and that meridian must be the axis.

Let us now use the ‘““cross’’ diagram to represent the powers in
each of the primary meridians of the cylindrical lens we have already
discussed, (P: x 180). {See figure A betow).
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+32180 +5x 90
+3 0

o +5

Since the vertical meridian has -+ 30 of power, it is labelled so,
and the horizontal, O D. We should, just by looking at the “cross’’,
_be easily able to write the formula of this simple cylinder as
4+ 3 x 180°.

1f you will recall, our first cylinder lens example was oriented
with the axis situated vertically (P X g0). This lens, of formula
4 5 x 90°, would be drawn on the “‘cross’” in the manner shown in
‘B above. Each of these lenses is a simple right cylinder with no
_ tefractive power given by the axis meridian. We have already con-
sidered how each lens imaged a point object 50 c¢cm away. To
reiterate, the + 5 x 80° cylindrical lens imaged the point as a vertical
line 33 cm from the tens. The + 3 X 180 lens created a horizontal
line image 1 meter away. in addition, we should now know that
. when each of these lenses is considered separately, it also forms
_another, but virtual line image which is located at the same position
as the ariginal object point and oriented perpendicular to the cylinder
- .axis.

Without too much difficulty, we should now understand what
‘happens if we put both cylindrical surfaces simultaneously onto one
piece of glass. instead of a right cylinder with a straight vertical
face [(no curvature}, we would now have one which has some
curvature vertically, as well as horizontally. We can still slice the lens
_ihte horizontal segments and obtain pieces with power P just as
we. did with the right cylinder. When, however, we slice this glass
‘vertically, the segments will now have power Pi. Such a combination
ens will act like our two separate right cylindrical lenses — the
45 X g0 and the + 3 x 180 —in forming their line images as
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@tfhé' axis associated with the power which imaged it. This is the
“most important practical point about cylindrical lens imagery, and
you must know it backward. forwards and should be able to recite it
even if you are awakened from a sound sleep; once again, it is the
idian of the axis that determines the orientation of the particular
ine-image created: So,

3 P, x 90 forms a vertical line image for each object point

already discussed, but this lens will do so simuitaneously. {However,
there will be no virtual image lines at the object position as with the 2
Maddox Rod.})

+3x 180 +5x90 g it

+3 0
A B P. x 180 forms a horizontal line image for each object point.

0 's The Circle of Least Confusion
mAgain back to our example with the object located 50 cm away.
+ § x 90 forms the vertical fine image 33 cm from the lens and
Iasxlas% ‘4 3 x 180 forms the horizontal line image 1 meter away. What

+3
C.
+5

RESULTANT: COMBINED
CYLINDER FORM

The diagram of these two separate cylindrical lenses (shown in
A and B above) can be combined on a resultant *cross’’ (C above) '_
to yield a single lens in which the power acting in each of the major .
meridians is simply added algebraically. This resultant represents.
the cylindrical combination which is written + 5 X 90 combined with,

+3x 180, or [ 135,200

Conversely, any “‘combined”” cylindrical lens can always be re
divided into two simple cylindrical lenses, as those shown above.
{You will get more experience with this tater). But remember, each:
cylindrical lens will be responsible for creating a focal fine for every:
object point, and each of the lines will have the same orientation as

APPEARANCE OF THE IMAIE OF POINT X
ON & SCRAEEN PARALLEL TO THE LEWS

are showing the same “combination of cylinders” lens we have
talking about, but here it is shaped more like a conventional
Pix 90 =+45x 80
P: x 180 = + 3 % 180
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vays be closer to that image line which is most proximal to the lens.
the “circle of least confusion” is always halfway
ble for imaging this
is

simple: two are in the horizontal plane (which is lightly shaded

These rays proceed to the horizontal edges of the lens. The other
two rays shown are in the vertical plane. P, {with its axis at 90°) acts'
in the horizontal plane but focuses the vertical line at X.” as shown.
{Remember, X 90 means we will be dealing with a vertical line
image). Similarly X 780 means we will have horizontal line imagery,
with power P: placing the horizontal line into position. :

In the figure abova, we are given a bright object point and an ylinders . ) he image fines (in-
image by the lens. If we place a screen parallel to the fens plane i > " The entire image which stretches between the Imag

the image space at position X.’, we will see a sharp, bright vertical luding the "“circle”) is known as'S!urm's m-terva{ and.ls often referred
line there (surrounded by some dim, diffuse light}; if the screen isi = as such. {4.F.C. Sturm investigated astigmatism 10 1838).
moved to position X»’, we will have a horizontal line. In between 3

these two line images, other shapes are present; we will find bright
spots of light shaped as shown in the diagram — verticaily oval when
in the proximity of the vertical line and horizontally oval when near
the horizontal line image. At one discrete screen position between
the two line images, we will find a perfectly circular spot; remember
that this spot of light represents the image at that particular screen
position of only one object point. Since the spot is here circular, it
maore closely represents a desired “"point”” image than does either

But, vergence-wise, '
between, and the lens power which is responsi
cirele is called the ~’spherical equivalent’ power; that power
hatt way dioptrically between the maximum and minimum
idional lens powers. That is the item you must remember. We will
nter the spherical equivalent later in reference to ''Cross-

Images of Extended Objects

only of the representation of object points

So far, we have spoken
f full objects?

' the astigmatic image. What about the images o
et s schematize first again; for a point object:

line image or some oval image. This image is called “the circle of
least confusion'” and represents the axial position which provides an
image which is less “'blurry’” overall than any other.

The exact position of the “‘circle of least confusion” is always TORK LENS

one-half way dioptrically between the two line foci {that fs, with a
vergence which is the average of X, and X.'). Clinically this is a
most important vergence.

In linear distance the “‘circle’” is always somewhat closer to that
image line which is nearer the lens; for example, with the object at
B0 cm, X, had an image vergence of + 3D and X’ an image
vergence of + 1 D. The “‘circle of least confusion’’ has a vergence of

15 {+3-+1) =+T4 = + 2 D and, thus, is located 50 c¢m from the:

POINT
OBJECT

DO

lens. But, X.” was 33 c¢cm away and X.’ was 100 cm away: so yau . . as above
can see that the ‘‘circle’” image is closer to {only 17 cm from) the Now, instead of considering only .o-ne object poin . ’
vertical line, and 50 cm from the more distant, horizontal line. It will \et's put a letter E at that same position.
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CONFUSION PLANE

Every point making up the E will form a vertical image line in
the vertical image plane. where the image of the E looks like that
shown on the left. (Notice that it's upside down, as are all real
images of an upright E}. The vertical, right-hand edge is sharp be-
cause all the individual vertical line images fall .superimposed on
each other.

in the horizontal image pfane {(shown on the right), every object
point in the E will give rise to a horizontal image line. Again, the
horizontal bars on the E are sharp since each horizonta! image line
falls on top of the adjacent one, reinforcing it.

In the plane of the circle of least confusion (center above), the
images of each object point are circles; this image more closely
represents the true shape of the actual object E than do either of the
other two images.

if the astigmatism were such that the two cylindrical axes were
not otiented vertically and horizontally but were at some other posi-
tions, each image line (for every point in the object) would still be
parallel to the corresponding axes — let's say 45° and 135°. The
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images might look somewhat like those below; notice that neither
the vertical nor horizontal parts of the E are clear, but, the image in
the plane of the circle of least confusion would, of course, look
exactly like that shown above.

o« b

/}WM/ Y

At this point we will skip learning what actually determines the
length of the image lines and size of the “circles of least confusion”.
This will be taken up later in a discussion of the use of the stenopeic
slit in clinical refraction.

Differential Motion of Image Lines

Without any difficulty whaisoever, we should now be able to
find the locations and orientations of the image lines. This is par-
ticularly easy to do when we express the cylindrical lens as a com-

" bination of two cylinders, (P, X 90 = P, x 180}. So, let's place a

new cylindrical lens in front of the above combination. This new
lens will add directly to the combination lens in a particular way.
Assume that its axis is parallel to either one of the others; (i it is
not; the cylindrical addition becomes more complicated — we will
breach this latter subject later on.) For the moment, then, we will
hold our new cylindrical lens P, so that its axis is at 180°. Now
P x 180 will add only to that power already present which has its
‘axis also at 180°; that is, P. X 180 adds only to P, X 180 and yields
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(P, + P3) x 180; the P. X 90 is not affected at all. Since P: x 180
was the power influencing the position of the horizontal line image,
the new P, X 180 will move onfy that same horizontal line.

P, can be either plus or minus. We are already acgquainted with a
plus cylinder x 180 (A below}; A — P> X 180 lens is called a minus
cylinder x 180 and would look like diagram B.

PLUS CYULINDER

MINUS CYLINDER

Either of these two cylindrical lenses would move only the pre-
existing horizonta! line, but each would move it in the opposite
direction: the pius cylinder would “"pull” that horizontal line image
closer to the lens itself since it adds plus vergence to the image line;
the minus cylinder will decrease the image vergence of that line and
“push’’ it further away. (Notice. we cannot automatically say that
either lens will move the horizontal line closer to or further from a
vertical image since that depends on where that vertical line is
situated!}

Let's look at a problem: If | show you a cylindrical lens com-
bination where the image-lines are at the positions shown in figure A
below, you should quickly be able to tell that the power associated
with axis 180° (P x 180) must be more plus than power P. with
its axis at 90°. You know this because the horizontal image ling lies
closer to the lens than the vertical one.
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[P, x|a0
F, %90

(VERTICAL LINE UNAFFECTED

B AN
: LI
l
-gxmo MOVES
HORIZONTAL LINE ONLY
+30 SPHERE
C P
k \ A i
""’r—‘ BOTH VERTIGAL AND
130 ' HORIZONTAL LINES ARE
*"3_0" MOVED FORWARD 3D

~IfI place a — P, x 180 in front of {and in contact with} this lens
{figure B above). ! wiil move the horizontal line back away from its
present position and towards the vertical line. (Figure B shows the
horizontal line being moved beyond the posmon of the vertical}.
‘You can see that it — P, is of just the “proper’” strength in minus
power, it will move the horizontal line exactly to the location of the
vertical. This would completely “collapse” the conoid of Sturm, and
+hus eliminate all the astigmatism present. At that moment, the sum
of P, and P. {both with their axes at 180°) will equal P; with its
axis at 90°; that is, the total power in both the 90° and 180°
meridians will be equal. It should be obvious that this total combina-
‘tion will be equivalent to a spherical lens. (A + 750D spherical lens
‘can also be written as +7.50 x 90 = + 7.50 x 180}.

So we have a beautiful mechanism for moving whichever image
line we wish. Use simple cylindrical lenses oriented with the axis
~ parallel {aligned in the same direction} as the image line you want
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to move. (Remember, plus cylinders mave the line closer while minus
cylinders push it away). The other line will stay put!

If instead of adding a simple cylinder {P. x 180) we add another
“combined’” cylindrical lens (P. x 90 Z Ps x 180), all we have to
do is add the powers associated with identical axes to obtain the
correct resultant lens power:

When lens P, x 180 Z P: X 80

is added to Ps x 180 Z~ P, x 90

you obtain (Pr + Ps) x 180 Z (P: + P.) X 90.
The combined powers associated with each axis will together move
their corresponding lines.

Instead of adding cylindrical power to a “‘combination’” cylinder
lens, let's add only spherical power. Since the spherical lens will add
equal powers to both meridians simultaneously. both image lines will
be moved equally, but only in a dioptric sense. {See figure C above).
Thus, if 4+ 3 D sphere is added to + 3 X 180 + 2 x 90, the
resultant would be

{(+3+3}x180 2 (+ 2+ 3) x 890
or +6 x 180 + 5 x 90.

Although both lines would be moved toward the lens an equal
dioptric distance {each by + 3 D), the linear distance moved by the
more distant line must be greater than that moved by the closer line.
This simply shows the effect that proximity {to a reference plane)
has on vergence, something you learned in the first few pages of
this book. Look at the following figure:

REFERENCE
PLANE

© ol 20 te cm
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A 1 cm linear distance between 10 and 11 cm corresponds to a

" dioptric change of 10 — 9.1 or 0.9 D, while that same 1 cm distance
" between 25 and 26 cm corresponds to a dioptric change of 4 —3.85
~ or 0.15 D. The addition of a full diopter of plus at the reference plane

~will “pull’* both sets of points forward but will exert a greater move-

‘ment effect on the more distant pair of points.

Transposition of Cylinders
We now have sufficient background to understand the different

‘ways we might describe a cylindrical lens combination.

On the “cross” diagram, we showed thata + 3 x 180 Z=—1 X 90
‘would look fike the following with the resultant lens shown below:

+3x180 J  -lx90 RESULTANT
+3 0 +3
bl |

This resultant is read as "+ 3 @90° (or + 3D in the vertical
‘meridian) combined with —1 @ 180°."
The resultant is the key way to describe any lens — just note

the dioptric power of the two major meridians.
We have expressed the above lens as a combination of two simple

“cylindrical lenses {+ 3 x 180 and —1 X 90). This same resultant

[gan also be divided into other combinpations — just as long as the
algebraic sum of meridian powers yields the same powers shown in

‘the major meridians of the resultant lens.
If we wished, we could subdivide the same resultant shown above

ﬁ"':into any number of other lenses: for example, the following three:
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|
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A B. G
-2 +5 0
l +6 , +5 ‘ 12
AL —2@890 B. +5@890 c. 0@ 90
+ 6@ 180 + 5@ 180 —12@ 180

Since the algebraic sum in each of the major meridians is ['_"_ :1’ g ?go] ;

the resultant of this 3-lens combination is still the same as the one
given in our last example. However, let’s get back to a more practical
“factoring’’ of the resuitant. It is conventional to divide the resuitant
into two lenses, one of which is a sphere, the other a simple cylinder.
We can determine the spherical component contained in our re-
sultant by subtracting, from both meridians, the power shown at
either of them. For example, the two meridional powers here are
+ 3D and — 1 D. We can remove 4 3 D of sphere from the resultant
by subtracting + 3 D from both the vertical and horizontal meridians;
we would then have the situation below:

REMAINING
RESULTANT —  +3D SPHERE = g;tll::‘t‘.‘EER
+3 +3 o

-4

l“e]""‘@
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it is clear, then, that our same resultant can be considered to be
composed of a + 3 D sphere combined with a — 4 x 90 simple
cylinder. {To check, just add the two major meridians algebraically;
you should obtain the original resultant’s major meridional powers).

CoNpED
SPHERE wrrw _CYLINDER £QuaLs RESULTANT

+3 —-4x90 =% 90
+3x 130]
+3 o +3

| 3 o i -4 @ -1

Written longhand, these same two lenses can be stated in a
‘spherocylindrical form:
+ 3 D sphere combined with — 4 D cylinder axis 90°
or better, +3 ——4 x90°%
or even shorter, 4+ 3 — 4 x90°.
This is a spherocylindrical shorthand for precisely the same resultant
lens which also represented our original “cambination’”’ of two
cylinders, This form is called the minus cylinder form since the
cylinder sign is minus. It is obtained from the resultant by choosing
to extract a sphere of such power so as 10 leave one meridian
remaining with minus power.
Return again to our resultant; we could, instead of extracting a
+ 3D sphere, have separated out a — 1 D sphere — representing
the other meridional power.
This would give us the two following lenses:
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SPHERE CYLINDER
e - LILINDEN
-1D () +4x180
it +4
-1 O
C]

{Again, a check by adding each of the corresponding meridian powers
would yield the same powers evident on the resultant}.

These lenses aiso can be written in a spherocylindrical form:

— 1 D sphere combined with + 4 D cylinder axis 180°,
or —1+ 4 x 180°.
This is called the pfus cylinder form.

Both plus and minus cylinder forms are convenient ways to write
down the corrective lens prescription for a spectacle lens. Both ex-
pressions represent single lenses that would focus light identicatly
on an optical bench or for a patient’s eye. However, only the powers
of the major meridians are explicit in these prescriptions. The actual

shape or surface curvatures of such a combination lens is not denoted

by these formulas; many different shapes or forms of proper prescrip-
tion lenses could provide exactly the same refractive powers for
each meridian. So. don't think you are prescribing a specifically
shaped lens with your notation. You are only indicating specific
powers, which will be identical for any of the ways in which you can
write the prescription.

The plus and minus cylinder forms can easily be interconverted.
If a minus cylinder lens is + 7 — 3 x 45, it can be changed to plus
cylinder form; to obtain the new sphere, algebraically add the sphere
and cylindrical powers — {4 7} + {— 3) = + 4; the new sphere
will be + 4 D. The cylinder sign Is simply changed 10 the opposite
sign (— 3 D becomes + 3 D} and the axis is rotated 90° — thus 45°
becomes 135°. The plus cylinder form of this lens is + 4 + 3 x 135.
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. The great advantage of both the plus and minus spherocylindrical
::?ﬁ‘o'rms is the immediate accessibility of the amount of cylinder and
axis; however, if you want to get some insight to the positions
directions of the image lines (which we will when considering
he clinical aspects of cylinders), the spherocylindrical form is not
. éeful as the third form — *‘the combination of the two cylinders'".
s this latter form which gives us more complete flexibility.

To find the third prescription form requires a minimum amount
. arithmetic; and this always seems to be a pitfall leading to
‘possible errors.

i My own favorite way to change the fens to this form is by way of
s ‘cross'’. Any errors are much less likely with this simple graphical
eans than with an algebraic one.

To convert from the spherocylindesr + 4 4 3 x 135, first jot
wn both sphere and cylindrical “crosses’’; then form the resultant
by adding the corresponding meridians and finally, write each
;neridian power as a separate simple cylinder,

44 SPHERE +3x 135
+4 +4 [+] +3
+4 +7
RESULTANT
+4x45 +7x 135
+4 o] o.- +7
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This is the required conversion:
+ 7 x 1356
Again, you can check by adding the powers in the major meridians;
you should arrive at the resultant lens. %
Remember we are still talking about one lens — we are describing’ iz
it as a combination of two cylindric lenses only to make it easier

to visualize its action on light. This lens would take an object point

at oo (U = 0} and form two focal lines; one is located +—$— or.
25 cm from the lens and oriented at 45° (just like the axis); the:

. . 1
second line is located = or 14.3 c¢cm from the lens and oriented

70D
at 135°.
. yd
~ 7
‘_Mﬂcn‘—[
25cm

Now, | think the beauty of this way of expressing a spherocylindri-
cal lens should be apparent, since it enables you to visualize the focal
lines clearly. However, you should, at the drop of a hat, be capabie of
transposing cylindrical lenses into any of the three forms shown.

Here, we should point out what the usual clinical axis-convention
is. You will use it every day when refracting a patient, and you will
just have to .memorize it. The 0° — 180° is the horizontal meridian.
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Bgins at the patient’s Jeft ear and rotates counterclockwise when
re facing the patient; this holds true for both eyes.

30° AXIS

e REFERENGE
EAR

120° AXIS

Meridional Powers of Cylindrical Lenses

: Wae have just seen that cylindrical lenses vary in their refracting
power, going from a maximum dioptric power in one major meridian’
to a minimum power at a second major meridian which is always
rpendicular to the first. But what about the powers in between?

~ The power gradation going from maximum to minimum meridional
power is not a straight line change: the power gain moving from the
ms meridian {which is minimum) to the maximum one increases by
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In this 3 D cylinder, the power in the meridian 60° to the axis is
3 {sin* 80°) =
3 (.866) =

3(75)=+225D

if there is an accompanying sphere in the lens, its power must be

added to that found in the cylinder’'s meridian to obtain the total
power exerted by that specific meridian. Try one for yourself:

PROBLEM:
What is the dioptric power in the 45° meridian of the sphero-
cylinder combination + 2 —5 X 907

ANSWER:
Sphere: + 2.00 D in all meridians
Cylinder: The angle between the cylinder axis and the required

meridian is 45°.
— 6 (sin” 45°) =
— 5 (.707)* =
— 5 (.5} = — 2.50 D at 45°
Therefore, the total dioptric power (at 45°)
=4+ 2.00—250=-—050D
For this lens there happens to be an easier way, which depends
on a fact: For any spherocylindrical lens, the power in the meridian
45° to the axis (that is, halfway between the maximum and minimum
meridional powers) is always the spherical equivalent of that lens —

half of the cylinder added to the sphere (14 % (—5) 4+ 2 = —0.50 D).
We will study much more about *'spherical equivatent” later.

Knowing this sine” relationship will help you determine the dioptric:

power in any meridian of any cylindrical lens. This may be useful to
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ou when deaiing with bifocals later, since you must know the total
refractive power at a particular point in a lens to be able to calculate
" the prism power induced there.

. The table below shows some selected meridional powers [in diopters) of a 1 diopter
‘tylinder, axis 180°. (These power figures denote the sing2 of the angle between the spe-
fic meridians menticned and the cyiinder’s axis.}) The meridional powers of cylinders
tihigher power than 1 D are directly proportionzl to those shown.

‘Meridian Power Meridian Power
0¢ and 180° .000 50° and 130° 587
10° and 170° .030 80° and 120° 750

© 20%and 160° 117 70° and 110° 884

- 30* and 150° .250 80° and 100* 970
0° and 140° 413 90° 1.000
52 and 135° 500

With this exposure to cylindrical lenses and astigmatic imagery
under your belts, you should be well equipped to handle clinical astig-
‘matism and refraction. We will delve deeper, when appropriate, into
" further aspects of this fascinating field.

EFLECTION

Somehow we're going to have to squeeze in another subject area
hat seems slightly out of place; yet it is important, so here goes.
 \When we first started out, we showed how the vergence of light
rays emanating from some object was influenced by lenses, each type
of lens adding or subtracting its own particular vergence power to
that of the incoming light and thus creating an image. There are other
surfaces which {like lenses} can also change vergence, These accom-
plish this feat not through the refraction of rays {via Snell's Law) but
hrough the reflection of rays.

Reflected rays can form an image {which also may be real or vir-
al) in much the same manner as refracted rays, and reflection
~ should be considered as a *'special case” of refraction — that is,
'subject to many of the same rules we have laid down for refraction.
The difference is that reflected rays are bounced off a smooth (flat or
curved) surface in an absolutely characteristic manner, with the angile
of incidence / always equal to the angle of reflection r — this is called

egular or specular reflection.
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